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Abstract

Based on the known sensitivity of a beam’s effective flexural rigidity to its static axial load, we
experimentally investigate whether measurements of lateral bending wavenumber, at a specified imposed
frequency, can be used to nondestructively determine that load. Initial estimates are that at an imposed
frequency in the vicinity of 200Hz, where wavelengths are of the order of 2m, the sensitivity should be
adequate if the wavenumber can be extracted with sufficient precision. Scanned laser vibrometry, followed
by digital lock-in, and referencing with a fixed accelerometer, is found to accurately measure steady-state
vibration distributions. Nonlinear least-square fits to theoretical forms consisting of a sum of guided
vibration modes then give a best-fit value for that wavenumber, a value that correlates well with the known
levels of load in the experiments. The proposed technique appears viable.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

With the advent of continuously welded rail in the last few decades, in which a rail can continue
for miles without interruption, the railroad industry has experienced an increasing concern with
large contained loads due in part to constrained thermal expansions and contractions. There has
long been a desire for efficient nondestructive and accurate methods to assess those loads [1]. With
see front matter r 2004 Elsevier Ltd. All rights reserved.
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neutral temperature, T0; defined as the temperature at which the stress is zero, one calculates that
the contained compressive load is given by P ¼ aEAðT � T0Þ; where a is the coefficient of thermal
expansion, E is the Young’s modulus and A is the cross-sectional area. For typical rails, aEA is
about 2500 lbf/1F.

A variety of techniques have been proposed for the efficient assessment of contained load
(or of neutral temperature, which is much the same thing). Accuracies of at least 101F in
neutral temperature, or 25 kips in contained load, are required. X-ray diffraction can measure
absolute strain, but X-rays penetrate only the surface. Magnetic hysteresis is similarly dependent
only on surface properties. Ultrasonic acousto-elasticity [2,3] is highly challenging, in part
due to the weak acousto-elastic constants of steels, in part due to the competing effects of
material texture, and in part due to its sensitivity to only the region being insonified. Permanently
attached strain gages [4] are used in places, but require a reference state, and do not correct
for plastic creep.

Rail-uplift [5] is increasingly proposed as a cost-effective technique. Some 30m of rail is
detached from the fasteners and the vertical force needed to lift the center by a fixed amount is
measured. Large tension leads to greater effective bending rigidity, and can be detected as a
greater required force. It is a testimony to the importance of the problem that the industry is
willing to engage in such a cumbersome process.

Vibration techniques have also been proposed. In a series of reports Beliveau and co-workers
[6,7] investigated a proposal to compare resonant frequencies of beams with and without
contained load, and correlate changes with that load. Much as with rail-uplift, tension
corresponds to greater effective rigidity, and higher resonant frequencies. Unfortunately, resonant
frequencies are more sensitive to the natural variations in supports and boundary conditions than
they are to contained load, and the technique was not sufficiently reliable.
2. Proposed stress measurement technique

Here, we investigate a variation on the resonant frequency approach discussed by Livingston et
al. [6]. Like the resonant frequency technique, and like the rail uplift technique, it takes advantage
of the sensitivity of bending rigidity to contained load. Unlike the resonant frequency technique
which uses the amplitude of vibrations, it measures the wavenumber of the spatial distribution of
vibration amplitude in response to imposed dynamic loads at a fixed frequency. It is proposed to
drive a rail in situ, at a fixed frequency chosen for convenience, to then measure the wavenumber
(klat.bend.) of the resulting lateral bending waves, and finally to compare this with the klat.bend.

expected without stress. The difference is the quantitative indicator of contained load, the formula
for which is given below. Unlike the resonant frequency approach, which is contaminated by the
unknown influence of rail supports, the proposed technique is in principle independent of them.
While the amplitude of response is of course dependent on the global condition of the rail and its
supports and in particular the length of a free unsupported span, the wavenumbers of the guided
waves over a short unsupported span depend only on the condition of the rail in that span. Thus,
no modelling of supports is needed for the proposed technique, their only influence being to
modify the amplitudes of the many modes, all duly considered as explained below. This section
begins with a brief review of the physical principle as revealed by a simple Euler–Bernoulli model
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of rail bending. It then describes the proposed measurement procedure in more detail. It discusses
the principles and challenges, and the method for the extraction of lateral bending wavenumber
from scanned laser vibrometry measurements.

2.1. Euler–Bernoulli estimate for required precision

A strength-of-materials model—the well-known Euler–Bernoulli beam theory—while accurate
only at long wavelengths, nevertheless gives a good indication of the principles behind the
relationship between stress and wavenumber. This theory also gives a good indication of the
precisions that may be needed if the method is to be practical—in error analysis additional
variations associated with the exact theory are negligible. (The Euler–Bernoulli theory is
inadequate for precise predictions, so for the proposed technique, wavenumbers are calculated
using elasticity theory, with precision limited only by the finite element mesh size.)

From the dispersion relation associated with the Euler–Bernoulli beam theory, for a beam of
Young’s modulus E, density r, area of cross-section A and moment of inertia I, the contained
longitudinal load P is

P ¼ rA c2br2gk2
�

o2

k2

� �
(1)

where cb ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
is the bar wavespeed, rg ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration and k is the lateral

bending wavenumber. Error analysis of this equation (taking variations, essentially partial
derivatives dP with respect to cb; rg and k, while recognizing that o2�cb2r2gk4 at realistic loads P)
gives the imprecision with which the contained load (or neutral temperature) is recovered:

dP

EA
¼ adDT ¼ 2r2gk2 drg

rg

þ 2
dk

k
þ

dcb

cb

� �
(2)

where a is the coefficient of thermal expansion. It follows that the imprecision of contained load
dP (or of neutral temperature dDT) has contributions from the uncertainty in rail dimensions, the
imprecision of measuring the bending wavenumber k and the imprecision of determination of the
rail elastic properties.

For the modified rail 136-lb AREMA (the cross-section geometry is shown in Fig. 1) with
rg ¼ 0:9925 in, E ¼ 3:05� 107 lbf=in2; r ¼ 7:33� 10�4 lbf s2=in2; n ¼ 0:3 and a ¼ 7� 10�6=1F;
and assuming the span length is equal to about one half-wavelength of the expected lowest
bending wave, L ¼ 39 in, with the wavenumber k ¼ p=L; one concludes that the target precision
of 726 kips (or 7101F) at the excitation frequency of 203Hz can be achieved providing the
compound imprecision of the three terms in Eq. (2) is not greater than 0.54%. Because these three
sources of error are not necessarily in phase, it is safe to assume that the radius of gyration and the
bar wave speed must each be known to at least 0.54% accuracy and the bending wavenumber k to
within 0.27%, to obtain a precision close to target. If two sets of measurements for two different
frequencies are used, the precisions of cb and rg become irrelevant because they cancel out of the
two associated equations for the load precision.

In general, decreasing the scan length by a factor of n results in n2 times lower precision of stress
or neutral temperature measurement. For example, decreasing the scan length to 20 in while
keeping the other parameters the same, leads to a neutral temperature precision of 740 F, which
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Fig. 1. The geometry and FE mesh used to model the rail 136-lb AREMA cross-section (136-lb denotes the rail

nominal mass in lbm/yd). A modification of the standard US rail profile is used here.
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can be compensated only by knowing rg and cb each to within 0.135% and k to within 0.067%.
But such short lengths used in a slender beam model, bring even the calculations of the
Euler–Bernoulli model into question and, therefore, should not be relied upon in the
measurements. Conversely, increasing the span to 80 in causes the requirements on drg=rg;
dcb=cb and dk=k to be relaxed by a factor of four.

Eq. (2) may also be used to show the desired formula relating the contained load P (that is, the
difference from the zero load) to the fractional difference between measured klat.bend. and that
predicted for the zero-load case:

P ¼ 4EAr2gk2 dk

k

� �
: (3)

For the load range of 0–100 kips, the Pðdk=kÞ curve is practically linear, passing through the
origin. This indicates that P is proportional to the fractional difference in klat.bend. with a
proportionality of 100 kips per % deviation in klat.bend., for the rail 136-lb AREMA at f ¼ 203Hz
where klat:bend: ¼ 0:0814 in�1:

2.2. Measurement procedure

The problem of measurement of klat.bend. to the required precision may well be non-trivial,
especially if practical concerns limit the free span over which the fasteners can be detached for
purposes of the measurement. While long spans will give greater precision, as seen above,
detaching all the fasteners over long spans is undesirable in practice. Over short spans there may
be contributions to the steady-state vibration field that are due to waves evanescent from the
edges. Regardless of the span length, one expects contributions from other propagating guided
modes, including the vertical bending, the longitudinal, and the torsional waves.
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In order to solve this problem we note that the steady-state displacement field is given, to good
accuracy, by a truncated guided mode sum:

d̂ðzÞ ¼
XM
m¼1

amumðx; y;oÞe�ikmz (4)

where umðx; y;oÞ is the nth guided mode shape and kn is the nth wavenumber at frequency o:
Critical to the technique proposed here is the observation from waveguide theory that the steady-
state harmonic response of a rail takes the above form, with constant am over any uniform
unsupported span z of the rail [8,9]. The coefficients am depend on the forcing and supports and
are in general difficult to predict. (They have been calculated [8] for the special case of an infinite
uniform unsupported rail with a harmonic point load.) The wavenumbers, including the lateral
bending wavenumber, are independent of those supports. The lateral bending wavenumber
depends on the unknown contained load and is therefore uncertain. In the parameter range of
interest the other wavenumbers are largely unaffected by that load. While there are infinitely
many guided modes, most are highly evanescent, and may be neglected [8] (hence the truncation
to only M terms) at all points z sufficiently far from the edges or supports or dynamic loads.

We propose to fit the truncated sum (4) to the measured displacement profile d(z) by using
values for the guided modes um and wavenumbers kn; as determined by a high-precision FEM
code [9] that calculates the propagating and evanescent-guided modes of a rail. The fit procedure
involves the minimization of the mean-square residual (w2) between the measurement and the sum
in Eq. (4) with respect to variations in the wavenumber klat.bend. (with all other wavenumbers
fixed) and the coefficients am: The result is a best-fit klat.bend., along with coefficients am that are
not important. The difference between the best-fit klat:bend and that expected at zero load is the
quantitative indicator of contained load, as in Eq. (3).

The basic set-up for the proposed field measurement of contained stress in a railroad rail is
shown in Fig. 2. The irregular distribution of fasteners is common in the field (defying efforts to
model the railroad rail as a beam on periodic foundation), and is emphasized on this schematic in
order to reiterate that knowledge of their position, periodicity or type of constraint is irrelevant
for the determination of contained stress.
3. Experimental confirmation with known load

The accuracy and overall viability of the proposed technique were tested by applying it to a
913

4
in piece of as-received railroad rail 136 AREMA, under controlled test-bay conditions with

known compressive load. The rail section was loaded axially, in compression, by a hydraulic
actuator with automatic load control. To ensure the strongest dynamic response and best signals
at each load level, the rail was vibrated at its corresponding resonant frequency. Two scans at
different points on the rail cross-section, along a 551

8
in span in the middle, were completed for

each of 5 load levels. The load was maintained constant throughout each scan. Signals were taken
from both the laser vibrometer, and from a fixed accelerometer, which provided a reference. A
digital lock-in process was used to minimize the influence of noise. A linear and nonlinear least
residual (least w2) process was used to fit that measured data to the form (4). The number of terms
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Fig. 2. Schematic of the rail stress measurement set-up in the field.
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M was taken equal to 10, corresponding to 5 rightward and 5 leftward waves. Except for the
wavenumber, klat.bend., of the lateral bending wave, the wavenumbers used in the fit were taken
from a FE solution [9]. The fractional difference between the klat.bend. that minimizes the fit
residual, and the klat.bend. predicted by the FEM code, was plotted versus the load, and the
resulting curve compared with expectations. This process is described in greater detail in the
following subsections.
3.1. Measurements of rail material properties and geometry

The bar wave speed cb ¼
ffiffiffiffiffiffiffiffiffi
E=g

p
; the major material parameter that features in our model, was

indirectly measured using longitudinal vibrations excited by an axial tap at one end. The laser
vibrometer was focused axially on the other end and the resulting signal was Fourier-transformed.
The peaks in the spectrum corresponding to the natural axial frequencies of the rail were
identified. These frequencies are multiples of bar wave speed divided by twice the beam length.
The bar wave speed calculated from the first three axial modes was cb ¼ 205 040� 480 in=s (or
5126712m/s). The reported error indicates a 0.2% precision—better than the required 0.54%.

The Poisson ratio, needed in the FE code, was determined by combining that cb with the
ultrasonic wavespeed across the rail head cL ¼ 237 760� 200 in=s (or 594475m/s) measured
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using a 10MHz multiply reflected ultrasonic pulse:

cL ¼

ffiffiffiffi
E

r

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

ð1þ nÞð1� 2nÞ

s
) n ¼ 0:299: (5)

That value is essentially identical to the published nominal value for carbon steel of 0.30, and the
difference is found satisfactory.

Finally, the exact shape of our factory-good rail (i.e., cross-sectional area and moment of
inertia, or radius of gyration rg) was not measured. The cross-sectional outline used in the FEA
was a slightly modified version of the published nominal 136-lb AREMA dimensions, which in
turn accurately represents any given factory-good rail only to the limit of the tolerances prescribed
by the AREMA standards. It was assumed that the nominal cross-section is acceptable because
the allowed production tolerance is better than 0.4%, which is again better than 0.54% required
by Eq. (2). However, the discrepancy between our FEM model and the nominal cross-section
increased the total inaccuracy: the radius of gyration for the most accurate mesh used in the FEM
calculations was 0.4% different from nominal, the difference being mostly due to a more tapered
(thinner) rail foot (Fig. 2). The potential inaccuracy of the cross-section geometry could be
remedied in the future by in situ profilometry of the cross-section.
3.2. Test-bay measurement set-up

The rail-actuator assembly was placed between two massive supports (schematics of the main
part of the set-up are shown in Fig. 3): a welded steel plate structure (on the left end of the rail)
and a concrete block (on the right end of rail). Both supports were attached to the test-bay floor
with structural bolts and a layer of hydro-cal (gypsum) to enhance the contact between the
x
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Fig. 3. Schematic of the test-bay measurement set-up (laser vibrometer scan platform and signal processing

instrumentation are not shown).
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concrete bloc and the floor, ensuring no slip and the rigidity of the supports even at the maximum
applied load of 100 kips.

An MTS Model 204.81 hydraulic actuator was used to axially load the rail with up to 100 kips
in compression. A constant load level was maintained by an INSTRON 8500 servo-controller, via
a servovalve integrated in the actuator, with a closed-loop position feedback from the load cell
placed in the piston head. The load cell used here was a strain-gage-based transducer with
sensitivity of 70.01 kips. The actuator was bolted at one end to the concrete block and its vertical
swivel axis was fixed after aligning with the rail. At its other end, the actuator was constrained
vertically as well as laterally by a steel block bolted to the floor.

The rail was laid on a foam pad at its left end, with a sheet of lead between it and the vertical
wall of the welded steel support, to prevent slipping. At the loading end, the rail was bolted to a
custom-made steel I-profile, which was bolted to a small steel block that was in turn bolted to the
floor. The I-profile ensured that the rail does not shift vertically or laterally during loading, but
only axially. This constraint was necessary because the neutral axis of the rail could not be
rigorously maintained collinear with the loading axis, causing the rail to shift upwards and
sideways even at low loads. All contact surfaces in the rail-actuator-supports assembly were
machined with 11 perpendicularity tolerance. The actuator axis was aligned with the central axis
of the rail with maximum 11 of discrepancy from the horizontal. The dimensions of the I-profile
itself were determined from the desired compliance in the axial direction, employing strength-of-
materials bending theory—not more than 1 kip in 100 kips was allowed to be ‘lost’ in axial rail
contraction of 2.3� 10�2 in (the amount of deflection of the I-profile at 100 kips). The load was
transferred to the rail by the adaptor—a simple steel cylinder that can be screwed on the actuator
piston (that is, the load cell) on one end, and that has a deep flat notch on the loading end, wide
enough to fit the web of the rail profile without touching its sides.

A 12.5 lbf electrodynamic shaker (Labworks Inc.) was used to excite the rail at a constant
frequency. An ICPs accelerometer (PCB Piezotronics Inc.), with quartz sensing element and
shear sensing geometry and with 750 g measurement range, provided the fixed reference that
could be compared with the signal from the scanning vibrometer. Standard procedure was
employed for attaching the shaker and accelerometer [10]: a small strong magnet maintained
contact between the shaker stinger and the rail surface, ensuring that the vibration response is
clean from nonlinearities induced by beating of the stinger. The shaker was placed near the
support end of the rail. A small amount of petro-wax was used to attach the accelerometer to the
rail surface near the loading end of the rail. The accelerometer and the shaker were fixed close to
the rail ends, both outside the scan region.

The scans were performed in the positive direction of the z axis shown in Fig. 3. The scan
platform consisted of a pine board, a metric ruler affixed at its edge and the aluminum tracks on
which the polyethylene plate with a position marker (Fig. 4) could slide, carrying the post-and-
bracket assembly for the vertical positioning. The laser vibrometer was fixed on top of the bracket
that could smoothly slide along the vertical post and be fixed at a prescribed height. The entire
scan platform was placed on a suitably low table topped with two layers of high-density foam in
order to insulate the laser vibrometer from the rail vibrations.

Much attention was given to alignment of the scan platform with respect to the rail. The
platform was aligned manually in the horizontal plane for every scan; this procedure resulted
occasionally in noticeable measurement errors. The vertical alignment was completed only once
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Fig. 4. Scan platform and vibrometer positioning with respect to rail (‘ is one of the laser visibility maxima).
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and remained on that level for all the scans, but the laser vibrometer stand-off distance had to be
adjusted every time when changing from P1-scan to P2-scan and vice versa, because the x
coordinates of P1 and P2 are different. This adjustment was necessary in order to ensure that the
same laser beam length (at one of the visibility maxima, ‘) was used in both scans and over the
entire scan length; the entire table was moved towards or away from the rail.

The rail response was scanned in 1 cm steps by a Polytec PDV 100 portable digital vibrometer
with a He–Ne laser (l ¼ 633 nm) of 50mm spot size and better than 0.05 mm/s resolution when
operated in its 20mm/s measurement range. The analogue voltage output of the vibrometer is
then sent to the data acquisition system.

In addition to maintaining the constant beam length (stand-off distance), signal quality was
enhanced by focusing the laser prior to each scan. The greater the beam length, the more difficult
it is to focus the beam, so the smallest length that the geometric limitations allowed in the test-bay,
‘ ¼ 372mm; was used in all the scans. In order to minimize beam scattering at the surface and
thus improve the vibrometer signal-to-noise ratio, the rail surface was lightly brushed with
sandpaper.

A scan of point P3—the point at the middle of the top of the cross-section (see Fig. 4)—was also
completed in order to confirm that vertical displacement during lateral excitation is indeed
negligible. Only a general idea of the vertical displacement amplitudes was needed for this study,
so the calibration and noise data were not measured for the P3-scan. In order to scan the point P3

perpendicularly to the top of the rail, the laser beam was deflected at 901 by a 1
2
in-diameter

broadband dielectric mirror (400–900 nm range). The mirror was fixed on a mirror mount that
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could slide on the horizontal ‘arm’ attached to the bracket, which could slide vertically along the
same post that carried the vibrometer fixture.

3.3. Signal processing, calibration and noise

A single 12-bit National Instruments DAQCardt-6062E in an IBM ThinkPad PC was
responsible for generation of the continuous sine waveform at frequency f, and for simultaneous
acquisition and digitization of the waveforms detected by the laser vibrometer and the
accelerometer. Generation and acquisition were controlled in separate virtual instruments
(VI’s) in National Instruments LabVIEW 6.1 software. The single frequency sine wave-
form generated in the DAQCard was amplified in a Crowns DC-300A II dual-channel power
amplifier, which then provided the input current for the electrodynamic shaker. A
general schematic of the generation and the acquisition part of the measurement setup is
shown in Fig. 5.

According to Shannon’s sampling theorem [11], the signal must be sampled at a rate at least
twice the highest frequency of the signal—in the present case, the excitation was at a fixed
frequency in the 20073Hz range, so the vibrometer and accelerometer signal capture
rate of 213 ¼ 8192 samples/s (or dt ¼ 1=8192 ¼ 1:22� 10�4 s for each sample) was deemed
sufficient. Because 2s of data were taken at each scan point, a total of N ¼ 16384 samples
were recorded.

In order to minimize the influence of noise, each waveform was then filtered by a digital lock-in
technique at the known frequency of vibration, o ¼ 2pf : This frequency was set by the operator
from the waveform generator VI on the PC and is known with virtually perfect precision. The
lock-in process converts the record viðtÞ of the vibrometer signal, captured over a period of time T,
Reference a (t)Signal v (t) 

Shaker 
Rail (seen from the top)
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va~

~
~

~
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Fig. 5. Schematic of signal processing (output is the transfer function at particular z).
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to a single complex number, its complex amplitude:

~v ¼
XN�1

n¼0

vne
�iotn ¼

XN�1

n¼0

vne
�iondt �

1

dt

Z T

0

vðtÞe�iot dt; (6)

where vn is the recorded voltage at time tn ¼ ndt: The complex amplitude ~a of the accelerometer
signal is given by a similar expression. If the duration of capture T is an integer multiple of the
vibration period 2p=o; the above is an element of the discrete Fourier transform [11,12]. In
general, however, such commensurability does not obtain.

This lock-in process is recommended for the usual reasons—it filters out the effect of signal
noise. For illustration, consider a case in which vðtÞ is a sinusoid plus noise. At time tn, it is

vn ¼ cosðnodt þ fÞ þ Wn: (7)

The lock-in procedure yields

~v ¼
N

2
eif þ 1

2
e�if sinðNodtÞ

sinðodtÞ
þ
XN�1

n¼0

Wne
�iondt: (8)

The numerator of the second term depends on the commensurability of T ¼ Ndt and o; but its
maximum absolute value is 1, and the term is therefore negligible. The third term is random; its
root-mean-square (rms) is smaller than the magnitude of the first term by a factor of order
2 rmsðWnÞ=

ffiffiffiffiffi
N

p
: Large N leads to relatively small contamination of the output by the noise.

The lock-in has another useful feature—it filters out extraneous frequencies (noise, or
harmonics induced by nonlinearities in the shaker or in the detectors). A simple calculation shows
that the contribution of a frequency aao is attenuated by a factor of the order Tða� oÞ: Thus a
harmonic 2o is attenuated in practice (where o=2p � 200Hz; and T ¼ 2 s) by a factor of about
2500.

The ratio of the filtered vibrometer signal to that of the accelerometer signal is the measured
complex transfer function [13]

TF ¼
~v

~a
: (9)

That the transfer function is defined in this way allows the procedure to accommodate vagaries
in the response of the structure. Shaker electronic impedances are notoriously sensitive to
temperature; even when run at a constant input voltage, the force produced by a shaker is a
function of current, which is in turn a function of both voltage and impedance. Hence, the
response of the structure can vary in the course of the scan. As shown in a more detailed study [9],
such drifts are undesirable.

The signal processing concludes with a record of the complex TF at each of the many laser
vibrometer scan positions. Finally, the scanned displacement profile is

dðzÞ ¼ C TFðzÞ; (10)

where C is a constant that can be obtained from the laser vibrometer output calibration
specifications for the particular vibrometer settings, but is irrelevant for this application because it
drops out in the fit process.
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Measurements of the force, using a force transducer between the shaker and the rail, and the
use of the more conventional definition of transfer function frequently used in vibration testing
[10], TF ¼ ~v=~s; where ~s is filtered force transducer signal, could in principle compensate for
variations in the response mentioned above. However, the measurement of acceleration from a
fixed accelerometer is preferred for present purposes. Small variations in the structure itself (e.g.,
due to temperature fluctuations) can lead to variations in the overall response of the structure that
would not be compensated by the ratio ~v=~s: This is especially true if the structure is driven near a
resonance where its response is particularly sensitive to external parameters, which is the case in
the present measurements.

Although the chosen definition of transfer function (9) ensures that most of the instrumentation
drift is filtered out, some drift still shows in the data and it is ascribed to the laser vibrometer and
accelerometer being intrinsically different instruments, with different calibration sensitivities to
ambient temperature. The character and the magnitude of this transfer function drift were
examined by fixing the laser vibrometer at one point on the rail and recording the response (2 s of
data) at that point, every 10 s over a period of 160min while the rail was being excited laterally at
a frequency of 233Hz.

As seen in Fig. 6, the amplitude of the transfer function (with the mean=64.4) drifted by –0.7
(i.e., 1%), while the phase (with the mean=0.629) drifted by 0.004 rad. The redeeming
characteristic of the drift is its apparent linearity, certainly over any 30min range. Although the
drift was relatively small, it was considered necessary to calibrate the output with respect to it,
using its linearity feature.

Several measurements were taken at a chosen fixed point (one with a generally high response)
before and after each scan—such measurements will be referred to as ‘point-scans’. They were
used for the calibration of drift and for noise estimates.

In order to ensure absolute referencing, it is important that both point-scans are
taken at exactly the same point. In the test-bay measurements a point at z ¼ 31 cm on
the P2-scan line (on the web of the rail) was selected for the calibration reference. The means
of the two sets (per each scan) were termed ‘calibration before’ cbfr and ‘calibration after’ caftr; and
were used to obtain the slope of the drift that may have occurred during the scan. Each point
of the scan was then corrected for the appropriate amount of drift according to the calibra-
tion equation

dðzÞ ¼ TFðzÞ
cbfr

cbfr þ ðcaftr � cbfrÞz=Ls

; (11)

where TF(z) is the complex transfer function for the entire scan, Ls is the total scan length, and
d(z) is the calibrated measurement—also a complex function. Both the P1- and P2-scans were
calibrated according to this equation, prior to being used in the w2 fit.

The signal noise for each scan was estimated using similar point-scans, but in this case the fixed
point was associated with a particular scan, again at z ¼ 31 cm: The measure of noise was the
variance of point-scan data for each scan, s2

P1
and s2

P2
; respectively. In practice, they were

approximately equal.
Processing of calibration and noise data was then completed within a fit code written in

Mathematica 4.2 software.



ARTICLE IN PRESS

0 20 40 60 80 100 120 140 160

0.626

0.628

0.630

0.632

0.634

Ph
as

e 
of

  T
F 

 [
ra

di
an

s]

t  [min]

0 20 40 60 80 100 120 140 160

64.0

64.2

64.4

64.6

64.8

65.0

A
m

pl
itu

de
 o

f 
 T

F 
 [

ar
b.

 u
ni

ts
]

t  [min]

(a)

(b)

Fig. 6. (a) Phase and (b) amplitude of the transfer function drift.
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3.4. Resonant frequency measurements

One of the important requirements of the proposed technique is a high signal-to-noise ratio. It
is usually achieved by choosing the driving frequency at or near a resonance in order to provide a
high amplitude of response. A long wavelength (�4m) resonance was found at about 60Hz, with
a bow-like mode shape. Better fits were obtained, however, and strong responses, for a sine-like
mode shape in the vicinity of 200Hz, at a wavelength of about 2m.

However, resonant frequencies are very sensitive to changes in the system—change in rigidity
due to change in load, slight shifting of supports during loading, changing the positions of
attachment of shaker and accelerometer, etc. Because the resonant frequency peaks in the
frequency spectrum of this system are very sharp, with about 1Hz width, driving the rail at a
frequency slightly lower or higher than the exact resonant frequency naturally results in a
considerably weaker response [10]. It was, therefore, considered beneficial to measure the exact
resonant frequency of the desired mode prior to the measurements at each load level. (The shaker
and the accelerometer were kept in exactly the same position for all scans.)
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The desired frequency was obtained by modal testing of the rail in the particular setting. The
same instrumentation was used as for vibration scans, but the excitation was transient instead of
steady-state—a light tap on the rail, with a plastic hammer and in the lateral direction. The laser
vibrometer was aimed at the presumed location of maximum response and recorded 10 s of data
that was then Fourier-transformed. A peak in the frequency spectrum corresponds to the desired
natural mode.

This procedure is illustrated on the case of the rail before its ends were cut and polished for the
measurements under load, and with slightly different placement of the shaker and accelerometer.
As seen in Fig. 7, slightly less than 7 s of data were taken, enough to obtain a clear frequency
spectrum, with a very sharp, obvious peak at 227Hz. (An overbar denotes a Fourier-transformed
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Fig. 7. Results of modal testing of uncut (93 in long) rail with no load: (a) response and (b) frequency spectrum.
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variable.) The amplitude of the rail response, then, while driven at this frequency, was high, with
excellent signal-to-noise ratio.

This modal testing was employed before the scans at each load level. The difference in
frequencies of the natural mode of interest, for different loads in the range used in this study
(0–100 kips), were small, as seen in Fig. 8.

The value corresponding to zero load was omitted from the plot simply because the boundary
conditions for that case are quite different than those for the case of the loaded rail. The trend is
otherwise an increasing one and it contradicts the implications of the Euler–Bernoulli beam
theory that the increase in compressive load should correspond to a decrease in natural frequency.
Livingston et al. [6] used the same theory, but with translational/rotational spring supports on
both ends—they measured several of the lowest resonances and fit them to the theory by varying
load and end stiffness. Their measurements, also at known load, have shown that the slope is
positive, as in the present study. It is perhaps not surprising that a model of spring supports whose
stiffnesses do not vary with load fails to describe real systems. This result illustrates how natural
frequency data as a source of information about contained stress are unreliable.
3.5. The least-squares fitting procedure

The data was fit to theoretical expectations by minimizing the following least-squares residual:

w2ða1...5; d; dzÞ ¼
1

Nz

1

s2

XNz

i

d1ðziÞ � d̂1ðzi;o; a1...5; ; dzÞ
��� ���2

 

þ
1

s2

XNz

i
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Fig. 8. Resonant frequencies for the 913
4
inch long rail 136-lb AREMA, for four different loads.
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where d̂ is taken in the form (4) of a sum of rightward and leftward waves. The sum is confined to
5 waves in each of the two directions: the lateral bending wave, the torsional wave, the evanescent
lateral bending wave, and two less well known evanescent waves whose importance is confined to
regions near supports and loads, but whose influence could not be neglected. The vertical bending
waves and the extensional wave have been neglected, consistent with expectations (the loading
does not excite them efficiently, and the measurement is relatively insensitive to them) and
consistent with rough measurements on the top of the rail (see below).

The minimimzation is taken with respect to the am’s; and may be constructed in closed form, as
the regression in those variables is linear. Further minimization with respect to two additional
nonlinear parameters is also conducted. One such is dz (described below). The chief parameter is
d; which describes how the wavenumbers are distorted:

~km ¼

km if not lateral bending;

kmð1þ dÞ if prop: lateral bending;

kmð1� dÞ if evan: lateral bending:

8><
>: (13)

Section 4 shows the best fit values of d and dz as extracted from this process, and also shows the
actual residuals, d1ðziÞ � d̂1:

3.6. Extraction of contained load

As explained above, the main assumption is that the change in klat.bend. due to contained load,
as calculated using Euler–Bernoulli beam theory, is the same as the change in klat.bend. obtained in
the test-bay measurements at known load. This assumption is illustrated in the sketch of a lateral
bending branch in the rail dispersion graph (Fig. 9). This distortion of klat.bend. due to contained
load P is easily calculated from the Euler–Bernoulli beam theory, starting from the dispersion
Measured

E-B

∆ kE-B ∆ kmeas.≈

k k (P) k (P= 0)

(Exaggerated)

ω

ω1

Fig. 9. Sketch of the lateral bending branch of dispersion relation for several cases: the Euler–Bernoulli beam theory

and the measurement, with and without load (full and dashed lines, respectively).
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relation (1):

dk

k

����
P

¼
1

4Arc2br2g
�

P

k2
; (14)

where dk=k is the relative distortion of klat.bend. (or just d) and dk is kmeasured
jP � kFEM

jP¼0: For the
load range of 0–100 kips, the Pðdk=kÞ curve defined by Eq. (3) is linear, passing through the origin.
Its slope, for the rail 136-lb AREMA, is 0:01%=kip: That is the curve that would be used in the
field to estimate the contained load for a known distortion of klat.bend., obtained from the
measurement fit.
4. Measurement results

4.1. Measured displacement profile

All the displacement profiles shown in this subsection are the raw, uncalibrated, measurement
data (that is, the transfer function), as represented by Eq. (10)—the calibrated data have the same
appearance and features as the raw data. The difference between the raw and calibrated data is
barely noticeable on the graph with a scale including the full response range.

The following representative graphs illustrate the typical displacement measurements obtained
in all cases. The real and imaginary parts of the measured lateral displacement of point P1 on the
side of the rail head, at zero load and excited at a frequency of 203.1Hz, are shown in Fig. 10. The
apparent wavelength, calculated from the figure as twice the peak-to-peak distance, is 80 in, which
is close to the predicted wavelength of the lateral bending mode—78 in—indicating that the
response is, indeed, dominated by the lateral bending. The shape of the response curve was
qualitatively the same at all load levels.
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Fig. 10. Lateral displacement measured in the P1-scan (across the side of the rail head).
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It is interesting to note that the peaks of the real (Re) and imaginary (Im) part are almost in
phase. The slight shift is best noticed at the point where Re and Im curves cross—that point is
slightly removed from the d ¼ 0 axis. The phenomenon is due to a slight contamination of the
wave field by travelling components—the field is not a purely standing wave; there are losses at the
supports.

On a single curve, Re for example, it can also be seen that the absolute magnitudes of the peaks
are not equal. This result is again due to the influence of the torsional mode: the lateral
displacements of the bending mode are almost the same for those positions, but the lateral
components of the torsional displacement are not. When they are added within the sum of modes,
the total magnitudes of the response for those two z positions are different. For the same reason,
the ratio of the peak magnitudes for the P1-scan is not the same as that for the P2-scan (see
Fig. 11).

Important additional information regarding the influence of the vertical bending waves on the
measurement is revealed with closer scrutiny of the response curves. The magnitude of vertical
displacement during lateral excitation was measured by scanning the point P3 on the top of the
rail head. Comparison of the Re curves of the P1- and P3-scans confirms the assumption that the
contribution from the vertical bending is negligible. It can be seen in Fig. 12 that the maximum
amplitude of the P3-scan is about 1=C1 ¼ 10 times smaller than that of the P1-scan. It can also be
seen that the wavelength of the P3-scan is close to that of the lateral bending mode, indicating that
the lateral bending mode is dominant and the influence of vertical bending is very small, i.e., of the
order C2o1: Finally, the lateral displacement component of the vertical bending mode is also very
small, again at least of the order C3o1: Together, these three arguments lead to conclusion that
the overall contribution of the vertical bending mode to the lateral displacement due to lateral
excitation is of the order C1C2C351; confirming that the vertical bending mode may be neglected
in the fits.
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4.2. Fit residuals as indicators of measurement errors

For each load case the best-fit residuals [14] were plotted and examined for irregularities that
would indicate errors in the measurement. In all cases, the residuals are small compared with the
data itself, thus indicating good fits. In some cases the residuals showed systematic trends,
indicative of measurement errors, which could be corrected by modifying the fit procedures.

If a z-position was accidentally missed or repeated in the scan, it appeared in the plot of the
residuals as a shift of part of the curve, starting from the offending position. This type of
operator-induced error occurred in only 3 out of 24 scans, and it was easily corrected by shifting
the entire curve by one point in the appropriate direction. Another easily corrected error was due
to occasional random glitches in the electronics. Its manifestation was a spike in the plot of the
residuals. Such data points never occurred more than once in any scan (in most scans not at all),
and were simply excluded from the fit.

The residuals of the raw data had a similar trend but higher magnitudes than those of the
calibrated data, thus confirming the need for calibration. Although the drift as a sole source of
measurement error has a small influence on distortion of klat.bend., if combined with
other measurement errors (as it was the case in the test-bay) it contributes to the overall
inaccuracy. Since the drift is one of the errors that can be adequately compensated for, the
calibration for drift was completed for all scans. An example of error introduced through
calibration itself is shown in Fig. 13. A simple case of contamination with a large wavelength
error introduced through erroneous calibration was detected in the 75 kips data. Upon correction
of the calibration, the fit residual acquired usual appearance, with fluctuations mostly due to
random noise.

One measurement error that occurred in all tests was a kink in the horizontal alignment of the
scan. It is illustrated here in the zero-load case. The residual of the best-fit displacement of the P2-
scan has a distinct jump around the middle of the scan region, as seen in Fig. 14. Such jumps in
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other cases also occurred around the middle of the scan. Careful consideration of all the physical
activities of the operator, as well as the instrumentation condition during the scan, identified the
culprit: the brief readjustment of seating when scanning around the middle of the range, in order
to make the manual moving of the heavy laser assembly easier, interrupted the otherwise smooth
process, so moving the laser to the next few positions included the temporary kink. Preliminary
lab measurements over the shorter scan regions that required no rearrangements of operator’s
position, had no jump in the fit residues, which confirms the above explanation. Because this error
occurred in all the scans, it was considered appropriate to exclude a few middle points from the fit.
The total number of points excluded around the middle of the scan region was between 5 and 14
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for all the scans—it is a small number compared with 141 points in a full scan, and the decrease in
the fit accuracy (w2) because of fewer fit points was a minor effect compared with the increase of
accuracy due to ‘cleaner’ data.

The random fluctuations in residuals that are larger in the vicinity of the places where the
data itself is small, indicate that there are random fluctuations in z. Such fluctuations (of
typical magnitude dz) translate to residual fluctuations of typical magnitude dzðdTF=dzÞ; which
have a fractional size of order dz � klat:bend:; and more characteristically, are the greatest
where TF has the greatest slope with respect to z, i.e., at the zeros of the TF. On observing such
fluctuations in the residuals, one concludes that there are random z errors, and that they lead to
somewhat greater ‘noise’—albeit correlated with zeros of TF. Therefore, they are not of great
concern.

The possibility that there is a z-shift between the P1 and P2 scans leads to a residual of
characteristic shape. Our design of the scan apparatus neglected to control against such
errors. One key feature of this kind of error is that the residuals of P1 and P2 data will be
equal and opposite; one will be the negative of the other. The other feature is a shape
of the residual resembling capital letter M (or W). The amount of mismatch in the scan
origin between two scans is estimated to be of order dz ¼ �=klat:bend:; where � is the fractional
size of the residual fluctuations. This quantity was calculated for all the cases and it amoun-
ted to not more than 0.049, 0.086, 0.05 and 0.062 in, for loads of 100, 75, 25 and 0 kips,
respectively.

The fit procedure was constructed to allow for slight differences of the scan origin between the
P1 and P2 scans—an additional nonlinear parameter dz was justified by the improved fits. Best-fit
values for this shift of scan origin were 0.005, 0.028, 0.07 and 0.035 inches, respectively, and are in
qualitative agreement with the amounts estimated above.
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4.3. Contained axial load

After removal of the kink-affected points in the middle of the scan range, the best-fit amount of
distortion of klat.bend. (dk=k; or simply d) for the 4 load cases was plotted versus applied load P.
The graph is shown in Fig. 15.

The slope of the linear fit through those points is s ¼ 0:00983%=kip; which is approximately
the same as the expected 0:01%=kip: Most critically, as seen in Fig. 16, the root-mean-square
fluctuation of the PðdÞ data points from the linear fit (i.e., the deviation from the zero residual) is
0.0105%, far better than the target precision of klat.bend., 0.27%.

Considering that in the proposed technique the slope is the key to contained load, the value
obtained in the measurements bodes well for the success of the technique in the field. It is even
more noteworthy that the measurement points do not deviate substantially from the linear fit. A
large deviation would indicate that more modes should be included in the sum, or that some
important mode was neglected, or that some other uncontrolled and erratic error was playing a
role in the measurement procedure.

A missing 50 kips data point is somewhat disconcerting, but could not be avoided. That the
measurements at 50 kips contained significant errors was noticed only after the setup was
disassembled, and they could not be repeated.

While the slope is in excellent accord with expectations, the linear fit does not pass through the
origin as expected, but rather intercepts the d axis by the amount of � ¼ 0:36%: A simple analysis
shows that, for a nonzero �; the error in an estimate of P would be �=s: For � ¼ 0:36% the load
imprecision amounts to 36 kips, which is higher than the target load accuracy of 26 kips.
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Although it is possible that the intercept was due to some general parameter having the same
error for all the load levels in this regime, it is speculated here that e represents an error in our
estimates of geometry of the cross-section. The cross-section outline used in FE solution
was not an exact copy of the outline provided by the commercial rail specifications, which
in turn is also not a perfect representation of the outline of the rail that was used for the
measurements. In situ profilometry of the cross-section—a standard procedure commonly
used in the field—would resolve this problem, but it was not available for the measurements
described here. In cases when the material properties or geometry cannot be reliably determined,
the procedure could be modified to include an additional set of two scans at a different
frequency—the output of the fitting procedure would in that case be the load and reference
rigidity EI.

It is also worth mentioning that in some cases the bounds of the kink-affected region were not
clear, so each point shown on Fig. 15 has its own error bar, or rather, a variation of d due to
somewhat arbitrary manual selection of the middle points to be excluded from the fit. The points
shown here were obtained with a conservative selection of the middle range to be excluded. If no
kink-affected regions are excluded from the fit, the resulting PðdÞ has a slope of 0:0106%=kip and
an intercept of � ¼ 0:785%: A more detailed statistical analysis of the variations in slope of PðdÞ
was deemed outside the scope of this work.
5. Conclusions

We proposed a new non-destructive vibration technique for the in situ nondestructive
measurement of longitudinal stress in railroad rails. Its underlying principles are simple: that such
stress affects the wavelength of bending waves, and that the wavelengths can be inferred by
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comparing the vibration amplitude distributions with distributions based on the wavenumbers
obtained from elastic waveguide theory. In practice, the technique was found to require a high
precision finite-element code for prediction of wavenumbers, to require an elaborate fitting
procedure with careful attention to the presence of both propagating and evanescent-guided
modes, and to require careful attention to sundry potential sources of systematic measurement
error. This technique can be applied to any slender structural element under static axial load, and
for the particular technologically pressing case of railroad rail, the technique was found to be
viable.

Two chief sources of error relevant to the proposed measurement technique were recognized.
Intrinsic beam properties (as represented by cb and rg in Eq. (1)) and vibration response (as
represented by the klat.bend.) each must be known with sufficient accuracy.

The lateral bending wavenumber has been extracted with high precision (as seen in the small
residuals of the PðdÞ linear fit in Fig. 16)—a precision 25 times greater than had been targeted was
achieved using a moderately fine mesh and entirely manual alignment and scanning. With this in
mind, vibration measurement errors are no longer critical to a successful development of the
technique.

However, it was also found that the intrinsic rail properties (as represented by the predicted
wavenumber at zero load) have not been obtained with the same accuracy. The error is not in the
FEM code, considering that klat.bend. has converged well. The values for cb and cL; as obtained
ultrasonically, were also highly accurate. The obvious inference is that the rail shape was the
culprit. As seen in Eq. (2), a 0.71% error in the effective rg would suffice to explain the remaining
errors. A rough comparison of the standard rail shape and the mesh perimeter of the modified
version used in the FEM code indicates that there is a difference of similar magnitude. A detailed
quantitative comparison was not undertaken.

It is remarkable that the rather sloppy apparatus nevertheless allowed sufficient precision
in the recovered values of klat.bend.. This was, however, at large cost in operator fatigue, in a
posteriori error corrections, and in general uncertainty. Therefore, there remains the need for an
improved apparatus that would allow more efficient test and fit procedures. At the cost of
sacrificing some measurement precision, a practical test could be conducted with much greater
speed just by taking less than 2 s of data per point, as signal-to-noise ratios appear to be much
better than necessary.

The remaining issue most critical for a viable practical technique remains an accurate a priori
estimate of the zero-stress wavenumber. This appears to be a matter of making accurate
measurements of the rail shape. Alternatively it may be possible to make measurements of
wavenumbers at more than one frequency, thereby determining both load and reference rail
properties. If the issue of rail shape measurement can be addressed, then we have a technique that
promises to be sensitive to contained load and, most importantly, does not require modelling or
measurement of supports. It is a technique that neither requires a zero-state reference
measurement, nor is sensitive to residual stress or microstructure.

As discussed following Eq. (2), the requirements on accuracy in lateral bending wavenumber,
both for the reference and measured k, are much reduced if measurements can be made at lower
frequency, the cost being the need to unfasten more ties. The issue that remains therefore is to
determine what optimal span of rail will most efficiently and accurately recover neutral
temperature.
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6. Guidelines for further development

The method’s good accuracy confirmed in the test-bay is promising for its further
implementation in the field. Several issues that could readily be resolved were identified in the
course of development of the method.

The use of an automatic high-precision laser platform and alignment procedure would improve
the displacement measurement precision and remove the need for adjusting the scan origins
analytically in the fit procedure. It would also minimize the kink, and other errors stemming from
inadequate alignment of the laser. This improvement would be a necessary first step in technique
development for commercial applications.

The previously mentioned profilometry would add a relatively brief step to the in situ
measurement procedures; the necessary tools are already in use by the rail maintenance crews. The
use of profilometry would also require the on-site calculation of klat.bend..

Finally, replacing the accelerometer with another laser vibrometer, for a finer referencing signal
without a drift due to calibration sensitivity mismatch, would provide more accurate
measurement without the need for calibration of every scan, and it would also decrease the
processing time considerably.

In conclusion, the proposed laser vibrometry technique for measuring the contained
longitudinal stress in slender structural elements was proven accurate in the test-bay
measurements with a known load. With several reasonable equipment upgrades, it can be
improved to become a reliable and portable tool for in situ stress measurements.
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